-
If f1(t) and f2(t) are duration-limited signals such that
f1(t) ≠ 0, for 5 < t < 7 = 0, otherwise f2(t) ≠ 0, for 1 < t < 3 = 0, otherwise
then the convolution of f1(t) and f2(t) is zero every where except for—
-
- 1 < t < 7
- 3 < t < 5
- 5 < t < 21
- 6 < t < 10
Correct Option: D
Given
f1(t) | ![]() | = 0, otherwise |
and, f2(t) | ![]() | = 0, otherwise |
Assume that

f(t) = f1(t)*f2(t)
= | ![]() | ∞ | f1(τ ).f2(t – τ )dτ | – ∞ |


Except these two possible range, we get zero output so range, 6 < t < 10.
Hence, alternative (D) is the correct choice.