-
If x(t) = sin 2πt e– t u(t), then its Fourier transform is—
-
-
1 1 – 1 2 1 + j(ω – 2π) 1 + j(ω + 2π) -
1 1 – 1 2j 1 + j(ω – 2π) 1 + j(ω + 2π) -
1 1 – 1 2j 1 + j(ω + 2π) 1 + j(ω – 2π) -
1 1 – 1 2j 1 + j(ω + 2π) 1 + j(ω – 2π)
-
Correct Option: C
x(t) = sin 2πte–t u(t)
x1(t) = e–t u(t) ←F.T.→ | = x1(jω) | |
1 + jω |
∴ sin 2πt = | |
j2 |
So,
x(t) = | ![]() | ![]() | e–t u(t) | |
2j |
By using frequency shifting property
x(t) = | x1(t) – | x1(t) ←F.T.→ | ||
j2 | j2 |
![]() | − | ![]() | = x(jω) | |||
2j | 1 + j(ω – 2π) | 1 + j(ω + 2π) |
Hence, alternative (C) is the correct choice.