-
The matrix [A] = 2 1 4 -1
is decomposed into a product of a lower triangular matrix [L] and an upper triangular matrix [U]. The properly decomposed [L] and [U] matrices respectively are
-
-
1 0 & 1 1 4 -1 0 -2 -
2 0 & 1 1 4 -1 0 1 -
1 0 & 2 1 4 1 0 -1 -
2 0 & 1 0.5 4 -3 0 1
-
Correct Option: D
By Dolittle’s decomposition,
![]() | ![]() | = | ![]() | ![]() | ![]() | ![]() | |||||||||||||
-1 |
We have u11 = 2, u12 = 1
l21 u11 = 4
⇒ l21 = 2
and l 21u12 + u22 = – 1
⇒ u22 = – 1 – l 21u12 = – 3
then , | ![]() | ![]() | = | ![]() | ![]() | ![]() | ![]() | .......(A) | ||||||||||||
-1 |
eqn (A) does not signfy any choice
Now, from crout’s decomposition,
![]() | ![]() | = | ![]() | ![]() | ![]() | ![]() | ||||||||||||||
-1 |
We get, l11 = 2, l11 u12 = 1
u12 = | = 0.5 | |
2 |
and, l 21 = 4 , l21 u12 + l22 = – 1
⇒ l22 = – 3
Then , | ![]() | ![]() | = | ![]() | ![]() | ![]() | ![]() | |||||||||||||
-1 |
Hence the choice is (d).