-
A uniform beam weighing 1800 N is supported at E and F by cable ABCD. Determine the tension (in N) in segment AB of this cable (correct to 1-decimal place). Assume the cables ABCD, BE and CF to be weightless.
-
- 1272.9198
- 127
- 1272.91
- 1272
Correct Option: C
Taking Moment about A.
T3 = | = 1125 N | 2 |
T4 = | = 675 N | 2 |
We get, VB × 4.5 = (1125 × 1.5 + 675 × 3.5)
⇒ VB = 900 kN ...(i)
⇒ VA = (1125 + 675 – 900) = 900 kN
M1, beam = (VA × 1.5) = 900 × 1.5 = 1350 Nm
M2, beam = (VA × 3.5 – 1125 × 2)
= (900 × 3.5 – 2250) = 900 Nm
Taking bending moment about point (i) [as we know that bending moment at every point in the cable is zero]
⇒ Hy1 = M1, beam = 1350 ...(ii)
Taking bending moment about point (ii)
⇒ Hy2 = 900
⇒ H = | = 900 N | 1 |
⇒ 900 y1 = 1350
∴ y1 = | = 1.5 m ....(iii) | 900 |
∴ θ1 = tan-1 | = tan-1 | = 45 | 1.5 | 1.5 |
θ2 = tan-1 | = tan-1 | = 14.03 | 2 | 2 |
From Lamis Theorem
⇒ | = | |||
sin(90 + θ2) | sin{[180 - (θ1 + θ2)]} |
⇒ T1 = | = 1272.91 | sin[180 - (45 + 14.03)] |