-
The vectors A→ and B→ are such that |A→ + B→| = |A→ - B→| The angle between the two vectors is
-
- 60°
- 75°
- 45°
- 90°
Correct Option: D
|A→ + B→|2 = |A→ - B→|2
= | A→ |2 + | B→ |2 + 2A→ . B→ = A2 + B2 + 2AB cosθ
= |A→ - B→|2 = | A→ |2 + | B→ |2 - 2A→ . B→
= A2 + B2 - 2AB cosθ
So , A2 + B2 + 2AB cosθ = A2 + B2 - 2AB cosθ
4AB cosθ = 0 ⇒ cosθ = 0
⇒ θ = 90°
So, angle between A & B is 90°.