- 
					 The right circular cone of largest volume that can be enclosed by a sphere of 1 m radius has a height of
 
- 
                        
-  
1 m 3 
 -  
2 m 3 
 -  
2√2 m 3 
 -  
4 m 3  
 -  
 
Correct Option: D
 
Given R = 1, radins of sphere. 
Let height of cone is H = h + R
| Volume , V = | π × (√R² - h²)2(R + h) | |
| 3 | 
for maximum value ,
| ⇒ | = 0 | |
| dh | 
| ⇒ | ![]()  | (R² - h²)(R + h) | ![]()  | ||
| dh | 3 | 
⇒ -2h(R + h) + (R² - h²) = 0
⇒ (R + h)(R - 3h) = 0
| h = -R , | ||
| 3 | 
| Height of the come = R + | = | ||
| 3 | 3 | 
| = | m = | m | ||
| 3 | 3 | 

