- 
					 
The differential equation dy + 4y = 5 dx 
is valid in the domain 0 ≤ x ≤ 1 with y(0) = 2.25. The solution of the differential equation is 
- 
                        
-  y = e4x + 5 
 -  y = e–4x + 1.25 
 -  y = e–4x + 5 
 - y = e4x + 1.25
 
 -  y = e4x + 5 
 
Correct Option: B
| + 4y = 5 | ||
| dx | 
I.F. = e∫4 dx = e4 x
⇒ y × I.F. = ∫ 5 × (I.F.)dx + C
| ⇒ y . e4 x = 5. | + C | |
| 4 | 
| ⇒ 2.25 × 1 = 5. | + C | |
| 4 | 
⇒ C = 1
| y . e4 x = 5. | + 1 | |
| 4 | 
| ⇒ y = | + e-4 x | |
| 4 | 
⇒ y = e-4 x + 1.25