- 
					 An analytic function of a complex variable z = x + iy is expressed as f(z) = u(x, y) + i v(x, y) where i = √-1. If u = xy, the expression for v should be
 
- 
                        
-  
(x + y)2 + k 2 
 -  
x2 - y2 + k 2 
 -  
y2 - x2 + k 2 
 -  
(x - y)2 + k 2 
 
 -  
 
Correct Option: C
Given u = x,y 
For analytic function
| = | |||
| ∂x | ∂y | 
| and | = - | ||
| ∂y | ∂x | 
By Milne Thomson method
Let w = u + zv
| ∴ | = | + i | |||
| dz | ∂x | ∂x | 
| = | - i | ||
| ∂x | ∂y | 
| or | = y - ix | |
| dz | 
Replacing x by z and y by 0, we get
| = 0 - iz | ||
| dz | 
where , z = x + iy
∴ dw = - iz dz
| Integrating , w = -i | + C | |
| 2 | 
where C is a constant ,
| ∴ V = Im | ![]()  | -i | + C | ![]()  | |
| 2 | 
| = Im | ![]()  | -i | + C | ![]()  | |
| 2 | 
| or V = | ||
| 2 | 

