-
Consider an ordinary differential equation dw = 0 - iz dz
If x = x0 at t = 0 , the increment in x calculated using Runge-Kutta fourth order multi-step method with a step size of ∆t = 0.2 is
-
- 0.22
- 0.44
- 0.66
- 0.88
- 0.22
Correct Option: D
Given , | = 4t + 4 | |
dt |
x = x0 at t = 0
n = 0.2
Calculate x(0.2) value
K1 = f(t0, x0) = f(0, x 0) = 4
K2 = f | t0 + | , x0 + | K1h | |||||
2 | 2 |
= f(0 + 0.1, x0 + 0.4)
= f(0.1, x0 + 0.4) = 4(0.1) + 4 = 4.4
K3 = f | x0 + | , x0 + | K2h | |||||
2 | 2 |
= f[t0 + 0.1, x0 + (2.2)(0.2)]
= f(0.1, x0 + 0.44) = 4(0.1) + 4 = 4.4
K4 = f(t0 + h, x0 + K3 h)
= f(0 + 0.2, x0 + 0.88)
= f(0.2, x0 + 0.88)
= 4(0.2) + 4 = 4.8
x(0.2) = x1 = x0 + | (K1 + 2K2 + 2K3 + K4) | |
6 |
= x0 + | [ 4 + 2(4.4) + 2(4.4) + (4.8) ] | |
6 |
= x0 + | (4 + 8.8 + 8.8 + 4.8) | |
6 |
= x0 + 0.88
Increment as x = x 1 – x0 = x0 + 0.88 – x0 = 0.88