-
A solid shaft can resist a bending moment of 3.0 kNm and a twisting moment of 4.0 kNm together, then the maximum torque that can be applied is
-
- 7.0 kNm
- 3.5 kNm
- 4.5 kNm
- 5.0 kNm
- 7.0 kNm
Correct Option: D
Maximum tensile stress due to bending,
ft = | ||
Z |
= | ||
{(π / 64 ) × d4 } | ||
d / 2 |
ft = | kPa | |
d3 |
Maximum shear stress due to torsion, fs = | ||
J |
= | |
× d4 | |
32 |
fs = | kPa | |
d3 |
When both the stress acts simultaneously, maximum induced shear stress,
fs max. = | [√(ft)² + 4(fs)² ] | |
2 |
Maximum torque that can be applied,
T = | fs max. | |
16 |
= | × | [ √(30.558 / d3)² + 4(20.37 / d3)² ] | ||
16 | 2 |
= 4 kNm