-
A solid shaft can resist a bending moment of 3.0 kNm and a twisting moment of 4.0 kNm together, then the maximum torque that can be applied is
-
- 7.0 kNm
- 3.5 kNm
- 4.5 kNm
- 5.0 kNm
- 7.0 kNm
Correct Option: D
Maximum tensile stress due to bending,
| ft = | ||
| Z |
| = | ||
| {(π / 64 ) × d4 } | ||
| d / 2 |
| ft = | kPa | |
| d3 |
| Maximum shear stress due to torsion, fs = | ||
| J |
| = | |
| × d4 | |
| 32 |
| fs = | kPa | |
| d3 |
When both the stress acts simultaneously, maximum induced shear stress,
| fs max. = | [√(ft)² + 4(fs)² ] | |
| 2 |
Maximum torque that can be applied,
| T = | fs max. | |
| 16 |
| = | × | [ √(30.558 / d3)² + 4(20.37 / d3)² ] | ||
| 16 | 2 |
= 4 kNm