- 
					 Given the ordinary differential equation
d2y + dy = 0 dx2 dx with(0) = 0 and dy (0) = 1, the value of y(1) is dx 
_______ (correct to two decimal places). 
- 
                        
- 1.4678
 - 1.4628
 - 1.4698
 - 1.46
 
 
Correct Option: A
(D2 + D – 6) y = 0 
y (0) = 0, 
y' (0) = 1 
(D + 3) (D – 2) y = 0 
D = 2, – 3 
C .F. = C1 e2x + C2 e–3x 
y = c1 e2x + C2 e–3x
y (0) = 0 
So, 0 = C1 + C2         ----------------------(i)
| y = (1) = | = 1.4678 | 5 | 
y (0) = 1
1 = 2 C1 – 3 C2 ___(ii)
From equations (i) & (ii), we get
| C1 = | , C2 = | |||
| 5 | 5 | 
| y = | - | |||
| 5 | 5 | 
when, x = 1
| y = (1) = | = 1.4678 | 5 |