-
Given the ordinary differential equation
d2y + dy = 0 dx2 dx with(0) = 0 and dy (0) = 1, the value of y(1) is dx
_______ (correct to two decimal places).
-
- 1.4678
- 1.4628
- 1.4698
- 1.46
Correct Option: A
(D2 + D – 6) y = 0
y (0) = 0,
y' (0) = 1
(D + 3) (D – 2) y = 0
D = 2, – 3
C .F. = C1 e2x + C2 e–3x
y = c1 e2x + C2 e–3x
y (0) = 0
So, 0 = C1 + C2 ----------------------(i)
y = (1) = | = 1.4678 | 5 |
y (0) = 1
1 = 2 C1 – 3 C2 ___(ii)
From equations (i) & (ii), we get
C1 = | , C2 = | |||
5 | 5 |
y = | - | |||
5 | 5 |
when, x = 1
y = (1) = | = 1.4678 | 5 |