-
If f(z) = (x2 + ay2) + ibxy is a complex analytic function of z = x + iy, where i = √- 1, then
-
- a = –1, b = –1
- a= –1, b = 2
- a = 1, b = 2
- a = 2, b = 2
Correct Option: B
For analytic function,
f (2) = (x2 + a y2) + ibxy
u + iv = (x2 + ay2) + i (bxy)
u = x2 + ay2; v = bxy
ux = 2x; uy = 2 ay
Vx = by; Vy = bx
ux = Vy; uy = –Vx
2 x = bx; 2ay = –by
By solving, we get
a = –1 b = 2