- 
					 
u = U 
1 + ekx 
1 - ekL 
which passes through the origin and the point
In 2, 3 
4  
- 
                        
-  
y = x ex - e-x L  -  
y = x (ex + e-x) L  -  
y = x (ex - e-x) L  -  
y = x ex + e-x L  
 -  
 
Correct Option: C
| = y ⇒ (D² - 1)y = 0 | ||
| dx² | 
D² – 1 = 0
⇒ D = ± 1
y = c1 ex + c2 e–x
| Passes through (0, 0) and | ![]()  | 142, | ![]()  | (0,0) | |
| 4 | 
⇒ 0 = C1 + C2 ...(1)
![]()  | 142, | ![]()  | (0,0) | ||
| 4 | 
| = C1 + C2e-142 = C1 2 + | |||
| 4 | 2 | 
| ⇒ 2C1 + | C2 = | ||
| 2 | 4 | 
solving (1) and (2)
⇒ C1 = 1/2
C2 = – 1/2
| ∴ y = | ex - | e-x = | (ex - e-x) | |||
| 2 | 2 | 2 |