- 
					 A harmonic function is analytic if it satisfies the Laplace equation. If u(x, y) = 2x² – 2y² + 4xy is a harmonic function, t hen its conjugate harmonic function v (x, y) is
 
- 
                        
- 4y² – 4xy + constant
 - 4xy – 2x² + 2y² + constant
 - 2x² – 2y² + xy + constant
 - – 4xy + 2y² – 2x² + constant
 
 
Correct Option: B
u(x, y) = 2x² – 2y² + 4xy  
As harmonic function is analytic therefore,  
ux = Vy  
uy = – Vx 
ux = 4x + 4y  
| Vy = 4x + 4y | ||
| δy | 
V = 4xy + 2y² + f(x)
Now
| Vy + f'(x) = 4y - 4x | ||
| δy | 
f'(x) = – 4x
f(x) = – 2x²2 + C
So, conjugate harmonic function v(x, y) is,
V = 2y² – 2x² + 4xy + C