-
Given Vc = e– 2t (sin t + cos t) the value of VL is given by—
-
- – e– 2t sin t + 3e–2t cos t
- – e– 2t sin t + e–2t cos t
- e–2t sin t – 3 e–2t cos t
- 5 e– 2t (sin t – cos t)
Correct Option: C
VC = e– 2t (sin t + cos t)
I R = VC 1/2 = 2e– 2t (sin t + cos t) amp
I C = C d dt VC = 1. d dt e– 2t (sin t + cos t)
= e– 2t d dt sin t + sin t d dt e– 2t + e– 2t
d dt cos t + cos t d dt e– 2t
= e– 2t (cos t – sin t) + sin t (– 2) e– 2t + cos t (–2) e– 2t
= e– 2t [cos t – sin t – 2 sin t – 2 cos t]
= e– 2t [– cos t – 3 sin t] amp
so IL = IC + IR = e– 2t (– cos t – 3 sin t) + 2e– 2t (sin t + cos t)
I L = IC + IR = e– 2t (– cos t – 3 sin t) + 2e– 2t (sin t + cos t)
VL = L d dt IL = 1. d dt e– 2t (cos t – sin t)
or VL = (cos t – sin t) d dt e– 2t + e– 2t d dt (cos t – sin t)
or VL = (cos t – sin t) (– 2) e– 2t + e– 2t (– sin t – cos t)
or VL = e– 2t (sin t – 3 cos t)
or VL = e– 2t sin t – 3 e– 2t cos t volt.