View Hint | View Answer | Workspace | Discuss In Forum | Report
Required answer = [64 log_{10} 2] + 1
Required answer = [64 log_{10} 2] + 1
= [ 64 x 0.3010 ] + 1
= 19.264 + 1
= 19 + 1
= 20
View Hint | View Answer | Workspace | Discuss In Forum | Report
∵ log_{a} x = ( log_{ab}x) / (log_{ab}a)
∴ The given expression = [[(log_{ab}x) / (log_{ab}a)] / [( log_{ab}x )] - ( log_{a}b)
= (1/log_{ab}a) - log_{a}b = log_{a}ab - log_{a}b = log_{a}(ab/b)
= log_{a}a = 1
∵ log_{a} x = ( log_{ab}x) / (log_{ab}a)
∴ The given expression = [[(log_{ab}x) / (log_{ab}a)] / [( log_{ab}x )] - ( log_{a}b)
= (1/log_{ab}a) - log_{a}b = log_{a}ab - log_{a}b = log_{a}(ab/b)
= log_{a}a = 1
View Hint | View Answer | Workspace | Discuss In Forum | Report
Given Exp.= log_{2}3 x log_{ 3}2 x log_{3}4 x log_{4}3
= (log3 / log2) x ( log2 / log3) x (log4 / log3) x (log3 / log4)
Given Exp.= log_{2}3 x log_{ 3}2 x log_{3}4 x log_{4}3
= (log3 / log2) x ( log2 / log3) x (log4 / log3) x (log3 / log4) = 1
View Hint | View Answer | Workspace | Discuss In Forum | Report
log_{2} 10 = log 10 / log 2
= 1 / log 2
= 1.0000 / 0.3010
log_{2} 10 = log 10 / log 2
= 1 / log 2
= 1.0000 / 0.3010
= 1000 / 301
View Hint | View Answer | Workspace | Discuss In Forum | Report
Given Exp. = log [{(9/8) / (27/32)} x 3/4)]
= log [(9/8) x (3/4) x (32/27)]
= log 1
Given Exp. = log [{(9/8) / (27/32)} x 3/4)]
= log [(9/8) x (3/4) x (32/27)]
= log 1
= 0